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Abstract.  In this paper we extend and investigate the model of the gas dynamic equation (GDE) to some 

new models involving the time-fractional gas dynamic equation (TFGDE) with the Liouville-Caputo 

(LC), Caputo-Fabrizio (CFC) and Atangana-Baleanu (ABC) time-fractional derivatives. We employ the 

Homotopy Analysis Transform Method (HATM) to calculate the approximate solutions of TFGDE by 

using LC, CFC and ABC in the Liouville-Caputo sense. We study the convergence analysis of HATM by 

finding the interval of convergence through the   h-curves. We also show the effectiveness and accuracy 

of this method by comparing the approximate solutions based upon the LC, CFC and ABC time –

fractional derivatives.  
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1.       Introduction  

 

 In this paper, we consider the Homotopy Analysis Transform Method (HATM) 

based upon the Liouville-Caputo (LC), Caputo-Fabrizio (CFC) and Atangana-Baleanu 

(ABC) time-fractional derivatives. It is applied here to find the solution of the 

homogeneous time-fractional gas dynamics equation (TFGDE) given by  
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                                         (1) 

where 

),0(),0(),( 0  and 10  .                                      (2) 

Here, and in what follows,  ),(,  ,   and    represent the order of the fractional 

derivative, the probability density function, the time coordinate and the spectral 

coordinate, respectively.  
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 The classical gas dynamics equation is obtained by putting 1  in (1). The 

essentials of the gas dynamic equation are based upon the physical laws of 

conservation, namely, the laws of conservation of mass, momentum and energy. Some 

fractional-derivative models were considered in the earlier works (see (Das & Kumar, 

2011; Hemida & Mohamed, 2010; Saad, 2018; Saad & Al-Shomrani, 2016). 

 In the past several decades, various real-world issues have been modeled in 

many areas by using some very powerful tools. One of these tools is fractional calculus. 

Several important definitions have been introduced for of fractional-order derivatives, 

including: the Riemann-Liouville, the Grunvald-Letnikov, the Liouville-Caputo, the 

Caputo-Fabrizio and the   Atangana-Baleanu fractional-order derivatives (see, for 

example, Atangana & Baleanu, 2016; Caputo & Fabrizio, 2015; Cattani et al.,2015; 

Kilbas et al.,2006; Ma et al.,2016; Podlubny, 1999). 

 Using the fundamental relations of the Riemann-Liouville fractional integral, the 

Riemann-Liouville fractional derivative was constructed, which involves the 

convolution of a given function and a power-law kernel (see,for details, (Kilbas et 

al.,2006; Podlubny, 1999). The Liouville-Caputo fractional derivative involves the 

convolution of the local derivative of a given function with a power –low function [12]. 

Recently, Caputo and Fabrizio (Caputo & Fabrizio, 2015) and Atangana and Beleanu 

(Atangana & Baleanu, 2016) proposed some interesting fractional –order derivatives 

based upon the exponential decay law which is a generalized power-law function 

(Alsaedi et al.,2016; Atangana, 2016; Atangana & Alkahtini, 2015a, 2015b; 2016; 

Atangana & Nieto, 2015). The Caputo-Fabrizio fractional- order derivative as well as 

the Atangana-Beleanu derivative allow us to describle complex physical problems that 

follow, at the same time, the power law and the exponential decay law (see (Alsaedi et 

al., 2016; Atangana, 2016; Atangana & Alkahtini, 2015a, 2015b; 2016; Atangana & 

Nieto, 2015)). 

 The main goal of the paper is to obtain the approximate solutions to TFGDE by 

applying the above-mentioned LC, CFC and ABC operators and HATM. The present 

paper is organized as follows: The next section (Section 2) is devoted to compute the 

HATM solutions by using the LC, CFC and ABC operators. In Section 3, we give 

several graphical representations as well as numerical results and consider their 

efficiencies and effectiveness. In the last section (Section 4), we present our concluding 

remarks and observations.  

 

2.      New HATM Solutions Based Upon the LC, CFC and ABS operators 

 

In this section, we use the HATM| (see, for example (Kumar et al., 2017; Saad & 

Al-Shomrani, 2016) in order to solve the LC, CFC and ABC analogues of the TFGDE 

(1).  To obtain these analogues equations, we replace the time-fractional derivative  












 in the TFGDE (1) by  



 DD CFCLC

00 ,  and DABC

0 , successively, where the 

order   of the time-fractional  derivatives is constrained by  

,...})3,2,1{:(,1  Nnnn  . 

The corresponding LC, CFC and ABC time-fractional analogues of the TFGDE (1) are 

given by 
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respectively. Here  DLC

0  and DCFC

0  denote the time-fractional derivatives of 

order   for a suitably defined function )(f , which are defined, respectively, by  
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where )(M   is a normalization function such that 1)1()0(  MM   and ))((0 
 fDABC    

is known as the ABC time-fractional derivative of order   in the Liouville-Caputo 

sense given, for a suitably defined function )(f , by  
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0 )1(
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is the Mittag-Leffter function and )(M  is a normalized with the same properties as in 

the Liouville –Caputo (LC) and the Caputo-Fabrizio (CFC) cases. 

 If 10  , then we define the Laplace of the Liouville-Caputo (LC), the 

Caputo-Fabrizio (CFC) and the Atangana-Beleanu (ABC) fractional-order derivatives as 

follows (see, for example (Atangana & Baleanu, 2016; Atangana & Koca, 2016; Caputo 

& Fabrizio, 2015, 2016; Losada & Nieto, 2015; Saad, 2018): 
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respectively. The initial condition is taken by letting  0   in the exact solution 
  e1),(  

and we thus have  
  e1)0,( .                                                    (9) 

 By applying the Laplace transform to the equations (3) to (5) and using the 

Laplace transform formulas (6) to (8), we obtain 
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respectively.  

Upon simplifying these last equations (10) to (12), we find that 
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We now define the nonlinear operator N  as follows (see (Kumar et al.,2017; Saad et 

al., 2017; Saad & Al-Shomrani, 2016; Singh et al.,2013; Srivastava et al.,2017): 
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where ]1,0[q  is an embedding parameter and );,( q  is a real function of   , and

.q  Liao (Liao, 1992; 2003; 2004; 2005) constructed the following zero-order 

deformation equation: 

)],;,([),()],();,([)1( 0 qNqhHqLq  
                          (15) 

where 0h  and 0),( H  are an auxiliary parameter and an auxiliary function, 

respectively, ),(0   is an initial guess for ),(   and );,( q  is an unknown 

function.  

 Obviously, when 0q    and  1q , we have  

),()0;,( 0  
 
and ),,()1;,(                                (16) 

respectively.  Thus, as q  increases from  0 to 1, the solution  );,( q   varies from the 

initial guess ),(0   to the solution ),(  . Upon expanding );,( q  in a Taylor 

series with respect to q , we have  
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If ),(, 0 L , h  and  ),( H  are properly chosen, the series in (17) converges at 1q    

and we have  
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 Let us now define the vectors ),(  m


 by 
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 Upon differentiating both sides of the equation (15) times with respect to q ,  if 

we set 0q  and then divide them by !m , we have the so-called m -th order 

deformation equation: 
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Upon computing the inverse Laplace transform of each member of the equation (21), we 

find the following power series solution: 
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Consequently, the first there terms of the HATM approximate series solution of the 

TFGDEs (3) to (5) are given 
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Following the same procedure, we can obtain the remaining approximations. We, 

therefore, have the following approximate solution of the equations (3) to (5), which we 

have derived here by using the HATM: 

,),(),(),(
1

)(

0

)(

0

)( 


 
m

j

                                        (38) 

where the superscript )(  is to be replaced by (LC), (CFC), (ABC).  

 

3.       Graphical Illustrations and Numerical Results 
 

  In Figure 1 (a) to Figure 1 (c), we compare the HATM solutions of TFGDE by 

using LC, CFC and ABC operators for ,99.0,5.0,3.0  respectively, with 5  and 

.5.1h  From Figure 1 we  observe that the solutions have the same behavior and are 

close to each other. For   close to 1, the solutions coincide with each other.  

 In order to determine the effect of the value of h  on the convergence of the 

HATM solutions, we plot the h  curves of )0,(    given by the sixth-order HATM 
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solution (38) against h . The interval of convergence is the region of the h -curves 

which is parallel to the h -axes.  

 Figures 2 to 4 show the h -curves for (3) to (5) for different values of  . It is 

clear from each of these figures that the h -curves are identical when the order 
approaches to 1.  

 Table 1 gives the absolute error when we use the first 6 terms of the HATM 

solution (38) for the operators LC,CFC and ABC in comparison with the exact solution 

of the classical gas dynamics equation. The order of these errors ranges form  310 to 
810 .  

 The above-mentioned behavior shows the effectiveness and accuracy of the 

approximate solutions for the operators  



 DD ABCCFC

00 , . We can also approximately 

find the region of convergence in h   for the HATM solution (38). 

 

4.       Concluding remarks and observations 

 

 In the paper, the HATM was utilized to evaluate the approximate solutions of 

the time-fractional gas dynamics equation (TFGDE). By using the Liouville-Caputo 

(LC), Caputo-Fabrizio (CFC) and Atangana-Baleanu (ABC) time–fractional derivative 

operators, we presented alternative solutions to TFGDE. We compared these 

approximate solutions with each other and a remarkably good agreement was found. 

Also, the interval of convergence for the Homotopy Analysis Transform Method 

(HATM) and the comparison with the exact solution for  99.0   were computed by 

means of Mathematica and a good agreement was found again. The behavior of the 

approximation that have been calculated by HATM based upon the LC, CFC and ABC 

fractional-order derivative operators was indicated to show the accuracy and 

effectiveness of this method for each of these fractional-order derivative operators. In 

the case when the fractional-order derivative became the classical derivative, the 

approximate solutions derived in this paper coincided with those given in earlier works.  

 
Table 1. The absolute error for the 6 terms of the HATM solution (2.36) by using the operators LC, CFC 

and ABC in comparison with the exact solution of the classical gas dynamics for  

10,99.0   and 1 . 

 

  Error for LC Error for CF      Error for ABC 

0.00 -810 1.03530  
-7101.39257  

-710 1.3925691  

0.50 -710 5.08056  
-710 9.80808  

-610 1.50003  

1.00 -710 9.78829  
-610 1.88506  

-610 2.9608  

1.50 -710 9.08386  
-610 2.7446  

-610 4.59977  

2.00 -610 2.74971  
-710 7.97116  

-610 3.65658  

2.50 -510 1.93700  
-510 1.28798  

-610 8.95815  

3.00 -510 7.19327  
-510 6.05798  

-510 5.5972  

3.50 -410 2.09898  
-410 1.90757  

-410 1.86651  

4.00 -410 5.31289  
-410 5.00016  

-410 4.98911  

4.50 -310 1.21995  
-310 1.17026  

-410 1.17661  

5.00 -310 2.60782  
-310 2.53086  

-310 2.55183  
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Figure 1. The HATM solution of (3) to (5) by using the operators LC (solid line), CFC (dashed line)  

and ABC (dashed-dotted line), respectively, for 5.1,5  h  and 

.99.0)(;5.0)(;3.0)(:1   cba  
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Figure 2. The h -curves of )0,(  at the 6
th

 term of the HATM solutions by using the operators 

LC, CFC and ABC for  5.0,3.0    and :1.0  (a) LC; (b) CFC; (c) ABC. 



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.3, N.1, 2018 

 
14 

 

 
 

Figure 3. The h -curves of )0,(  at the 6
th

 term of the HATM solutions by using the operators LC, 

CFC and ABC for  7.0,3.0    and :1.0  (a) LC; (b) CFC; (c) ABC. 
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Figure 4. The h -curves of )0,(  at the 6

th
 term of the HATM solutions by using the operators LC, 

CFC and ABC for  9999.0,3.0    and :1.0  (a) LC; (b) CFC;+ (c) ABC. 
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